Schedule
L: Lecture
B: Lab
G: Group Work
H: Individual office hours
Day 1 (10:00-18:00)
Intro to conjoints
L: Welcome & why survey experiments L: Rubin Causal Model & foundations and assumptions of the binary forced-choice conjoint designB: Try out different conjoint experimentsG: Academic speed-dating; find group of like-minded researchers; work on individual projects in groups (task: present your core idea to the others)H: Individual office hours
Literature:
Required
Stantcheva, S. (2023). How to run surveys: A guide to creating your own identifying variation and revealing the invisible. Annual Review of Economics, 15, 205-234.
Optional
* Cornesse, C., et al. (2020). A review of conceptual approaches and empirical evidence on probability and nonprobability sample survey research. Journal of Survey Statistics and Methodology, 8.1, 4-36.
Day 2 (09:30-17:15)
Designing a conjoint
L: Set-up of conjoint survey experimentsL: Working with external survey providersB: Setting up surveys yourself online (Qualtrics) or offline (Word/Excel)G: Work on individual projects in groups (task: improve design of your own project)H: Individual office hours
Literature:
Required
Bansak, K., Hainmueller, J., Hopkins, D., & Yamamoto, T. (2021). Conjoint Survey Experiments. In J. Druckman & D. Green (Eds.), Advances in Experimental Political Science (pp. 19-41). Cambridge:
Cambridge University Press.
Bowen, T., Goldfien, M. A., & Graham, M. H. (2023). Public opinion and nuclear use: Evidence from factorial experiments. The Journal of Politics, 85(1), 345-350.
Mutz, D. C. (2011). Population-based survey experiments. Princeton University Press. Chapters 4, 7.
Optional
* Hainmueller, J., Hopkins, D. J., & Yamamoto, T. (2014). Causal inference in conjoint analysis:Understanding multidimensional choices via stated preference experiments. Political Analysis, 22(1), 1-
30.
* Hainmueller, J., & Hopkins, D. J. (2015). The hidden American immigration consensus: A conjoint analysis of attitudes toward immigrants. American Journal of Political Science, 59(3), 529-548.
Day 3 (09:30-17:15)
Analyzing a conjoint
L: AMCEs and beyond L: How to analyze conjoint experiments? Discuss code and interpret resultsB: Practice code on how to analyze a conjoint experimentG: Work on individual projects in groups (task: improve design)H: Individual office hours
Literature
Required
AMCE and beyond:
Leeper, T. J., Hobolt, S. B., & Tilley, J. (2020). Measuring subgroup preferences in conjoint experiments. Political Analysis, 28(2), 207-221.
Optional
* Abramson, Scott F., Korhan Kocak, und Asya Magazinnik (2022). „What Do We Learn about Voter Preferences from Conjoint Experiments?“ American Journal of Political Science, 66(4), 1008-20.
* Bansak, Kirk, Jens Hainmueller, Daniel J. Hopkins, und Teppei Yamamoto (2022). „Using Conjoint Experiments to Analyze Election Outcomes: The Essential Role of the Average Marginal Component
Effect“. Political Analysis, 31(4), 1-19.
Alternative Designs :
* Clifford, S., Leeper, T. J., Rainey, C. (2024). Generalizing Survey Experiments Using Topic Sampling: An Application to Party Cues. Political Behavior, 46(2), 1233-56.
* Offer-Westort et al (2021) - Adaptive Experimental Design: Prospects and Applications in Political Science. Americal Journal of Political Science, 65(4), 826-844.
* Vecchiato, A. & Munger, K. (2024). Introducing the Visual Conjoint, with an Application to Candidate Evaluation on Social Media. Journal of Experimental Political Science, First View, 1-12.
Day 4 (09:30-17:15)
Estimation and extensions
L: Preregistrations, statistical power, ethicsL: Calculating powerB: Discussing individual research projectsG: Prepare reading and presentation for Friday (group work)H: Individual office hours
Literature:
Required
Preregistrations:
Alrababa'h, A., Williamson, S., Dillon, A., Hainmueller, J., Hangartner, D., Hotard, M., . . . Weinstein, J. (2023). Learning from Null Effects: A Bottom-Up Approach. Political Analysis, 31(3), 448-456.
doi:10.1017/pan.2021.51
Optional
* Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Chambers, C. D., Percie du Sert, N., ... & Ioannidis, J. (2017). A manifesto for reproducible science. Nature human behaviour, 1(1), 1-9.
Required
Statistical Power:
Lakens, D. (2022). Sample size justification. Collabra: Psychology, 8(1), 33267.
Optional
Implementation / Ethics:
* Mutz, D. C. (2011). Population-based survey experiments. Princeton University Press. Chapter 6.
* Slough, T. (2024). Making a Difference: The Consequences of Electoral Experiments. Political
Analysis, 32(4), 384-400.
Day 5 (09:30-14:30)
Current debates
L: Current debates in conjoint survey experiments (Groups present one paper from the list; ensure short and concise presentation)L: Dos and don'tsB: Discuss open questions (link to your own projects if you want)
Literature:
Required
Dos and Don'ts:
Kane, John V. (2024). More than meets the ITT: A guide for anticipating and investigating non-significant results in survey experiments. Journal of Experimental Political Science, 1-16.
Optional
* Stantcheva, S. (2023). How to run surveys: A guide to creating your own identifying variation and revealing the invisible. Annual Review of Economics, 15, 205-234.
One reading required (groups choose on day 1/2 which to read) to be presented on Friday by the groups
Current Issues:
Berinsky, A. J., Frydman, A., Margolis, M. F., Sances, M. W., & Valerio, D. C. (2024). Measuring Attentiveness in Self-Administered Surveys. Public Opinion Quarterly, 88(1), 214-241.
Clayton, K., Porter, E., Velez, Y., & Wood, T. J. (2024). Improving debriefing practices for participants in social science experiments. PNAS nexus, 3(12), page 502.
Clayton, Katherine, Yusaku Horiuchi, Aaron R. Kaufman, Gary King, and Mayya Komisarchik (2023). Correcting Measurement Error Bias in Conjoint Survey Experiments. Unpublished working paper. Available at:
https://gking.harvard.edu/conjointE (also links to R package) (13.01.2025).
Dafoe, Allan, Baobao Zhang, und Devin Caughey (2018). Information Equivalence in Survey Experiments. Political Analysis 26(4), 399-416.
Liu, G., & Shiraito, Y. (2023). Multiple Hypothesis Testing in Conjoint Analysis. Political Analysis, 31(3), 380-395.
Mummolo, J., & Peterson, E. (2019). Demand effects in survey experiments: An empirical assessment. American Political Science Review, 113(2), 517-529.
Porter, E., & Velez, Y. R. (2022). Placebo selection in survey experiments: An agnostic approach. Political Analysis, 30(4), 481-494.
Bonus options (if groups see better fit):
Andersen, D. J., & Ditonto, T. (2018). Information and its presentation: Treatment effects in low-information vs. high-information experiments. Political Analysis, 26(4), 379-398.
Brutger, R., Kertzer, J. D., Renshon, J., Tingley, D., & Weiss, C. M. (2023). Abstraction and detail in experimental design. American Journal of Political Science, 67(4), 979-995.
Egami, N., & Hartman, E. (2023). Elements of External Validity: Framework, Design, and Analysis. American Political Science Review, 117(3).
Fong, C., & Grimmer, J. (2023). Causal inference with latent treatments. American Journal of Political Science, 67(2), 374-389.
Horiuchi, Y., Markovich, Z., & Yamamoto, T. (2022). Does conjoint analysis mitigate social desirability bias?. Political Analysis, 30(4), 535-549.
Jenke, L., Bansak, K., Hainmueller, J., & Hangartner, D. (2021). Using eye-tracking to understand decision-making in conjoint experiments. Political Analysis, 29(1), 75-101.
Montgomery, Jacob M, and Erin L Rossiter (2020). So Many Questions, So Little Time: Integrating Adaptive Inventories into Public Opinion Research. Journal of Survey Statistics and Methodology 8(4), 667-90.
Robinson, Thomas S., and Raymond M. Duch (2024): How to detect heterogeneity in conjoint experiments. Journal of Politics, 86(2), 412-427.
Rudolph, L., Freitag, M., & Thurner, P. (2024). Ordering Effects Vs. Cognitive Burden-How Should We Structure Attributes in Conjoint Experiments. Public Opinion Quarterly, 88(3), 991-1016.